Total Solid Phase Syntheses of the Quinazoline Alkaloids: Verrucines A and B and Anacine

Haishan Wang and Mui Mui Sim*
Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore
Received J uly 13, 2001
The first total syntheses of verrucines A and B and anacine (revised structure) were accomplished on Sasrin resin. This work confirmed the structure of verrucine A and unambiguously showed verrucine B to be a derivative of d-phenylalanine and L-glutamine. The study al so proved that anacine and its epimer are quinazoline alkaloids, not benzodiazepines as originally proposed. 1-Hydroxyverrucine B, derived from air oxidization of verrucine B, was also isolated and characterized.

Fungi are capable of incorporating anthranilic acid and amino acids into a variety of fungal quinazoline metabolites. ${ }^{1}$ Examples are glyantrypine from Aspergillus clavatus, ${ }^{2}$ fumiquinazolines F and G from Aspergillus fumigatus, ${ }^{3}$ and fiscalin B from Neosartorya fischeri and Corynascus setosus. ${ }^{4}$ Recently Larsen et al. reported the isolation of verrucines $A(\mathbf{1})$ and $B(\mathbf{2})$ as a major and minor metabol ite, respectively, from Penicillium verrucosum. ${ }^{5}$ Verrucine A was derived from anthranilic acid, L-phenylalanine (Phe), and L-glutamine (GIn). However, the stereochemistry of its isomer, verrucine B, was not unambiguously assigned due to its epimerization. In the paper, the authors also pointed out that anacine, which was isolated from Penicillium aurantiogriseum, should have a quinazoline structure (4) rather than a benzodiazepine structure (3) as originally proposed by Mantle and co-workers. ${ }^{6}$ The structure of anacine was revised according to the similarity of its UV and NMR spectra to those of verrucines A and B. To unambiguously confirm their structures as well as to establish their absolute configurations, we undertook the challenge of synthesizing verrucines A and B and anacine (revised structure).

1, Verrucine A $\left(R^{1}, R^{2}=\beta-H, \beta-H\right)$
2, Verrucine B $\left(R^{1}, R^{2}=\alpha-H, \beta-H\right.$ or $\beta-H, \alpha-H)$

3, anacine
(originally proposed)

4, anacine
(revised)

Results and Discussion

A general protocol for quinazol ine alkaloid synthesis has been recently reported by Wang and Ganesan ${ }^{7}$ and since utilized by several groups to synthesize other quinazoline

[^0]alkaloids. ${ }^{8}$ This protocol was adapted for our syntheses of verrucines A and B and anacine.

We foresaw that the steric hindrance of the 1,4-syn disubstituted bulky side chains in verrucine A and anadine could interfere with the cydization step. Therefore, we envisioned that solid phase synthesis would be the best choice for the synthesis of these compounds for two reasons: (1) workup at each step would be easy, as excess reagents could be simply washed away; and (2) only the cyclized compound would be released from the resin. The primary amide in the glutamine side chain was protected in order to minimize dehydration of the amide to nitrile. ${ }^{7 b}$ Trityl (triphenylmethyl) was selected as a suitable protecting group for glutamine amide because of its ease of removal under acidic conditions.
Starting with F moc-L-GIn(Trt)-Sasrin-resin (5), the F moc was removed using piperidine, and the resulting amino resin was coupled with anthranilic acid to give peptide 6 (Scheme 1). The anthranilamide 6 was initially acylated with F moc-L-phenylalanine acid chloride, ${ }^{9}$ added in two portions (5.1 and 4.7 equiv). Due to the highly acid labile property of Sasrin resin, the reaction solution was kept neutral to minimize the possible cleavage of the resin. The linear peptide 7a was dehydrated to give benzoxazine ${ }^{10} \mathbf{8 a}$, which was further deprotected and transformed to the amidine intermediate ${ }^{11} 9$ a. Cyclization of 9 a in refluxing $\mathrm{MeCN}-\mathrm{Cl}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Cl}$ provided N -trityl verrucine A (11a) as the major product in 12% overall yield from 5. A trace amount ($<1 \%$) of the anti epimer 10a was also isolated. Refluxing the resin for an additional 13.5 h provided only minute amounts of 10a (0.4\%) and 11a (1.5\%). Apparently, the additional reaction time did not improve the yield, but increased the ratio of the epimerized product to the desired product. To improve the yield of 11a, resin 6 was instead subjected to a double acylation process (2×5 equiv). Following the same cyclization protocol described above, 11a was obtained in 17.0% final yield.

The 1,4-syn configuration of 11a was studied and established by NOE. A NOE correlation was observed between one of the Phe methylene protons at 3.19 ppm and one of the GIn side chain methylene protons at 1.93 ppm , thus suggesting that the Phe and GIn side chains were on the same side, i.e., a 1,4-syn configuration. Similarly, a NOE correlation was observed between the methine of Phe of 10a at 4.88 ppm and that of GIn methylene protons at 2.22 ppm , thus indi cating that the Phe and GIn side chains were on the opposite side, i.e., a 1,4-anti configuration. The results were in accordance with the conformations calculated by M M2 (see Supporting Information).

Verrucine A was obtained in 84\% yield by deprotecting 11a with 40% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The proton NMR of the crude

Scheme 1. Total Solid Phase Syntheses of Quinazoline Alkaloids: Verrucines A and B and Anacine ${ }^{\text {a }}$

a Reagents and conditions: (a) 20% piperidine in DMF, $15 \mathrm{~min} \times 2$. (b) EDC (13.4 equiv), anthranilic acid (12.1 equiv), DMF (method A) or NMP (method B), rt 19 h . For 7a-11a: (c) pyridine (7.9 equiv), $\mathrm{Fmoc}-\mathrm{L}-\mathrm{Phe-Cl}\left(5.1\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt 13 h , workup; repeat once in DMF. (d) Ph 3 P (12.0 equiv), I_{2} (11.1 equiv), $\mathrm{Et}(\mathrm{i}-\mathrm{Pr})_{2} \mathrm{~N}$ (25.0 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt overnight (15 h). (e) 20% piperidine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt 30 min . (f) $\mathrm{MeCN} /\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ (i:1), reflux overnight. (g) TFA/ $\mathrm{Et}_{3} \mathrm{SiH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 2: 1)$, rt 15 min . Please refer to the Experimental Section for detailed conditions for $\mathbf{7 b}-\mathbf{1 1 b}$ and $\mathbf{7 c}-\mathbf{1 1 c}$.
product showed that ca. 3\% 1,4-anti epimer was also formed. The H-1 and H-4 signals of 1 were well separated in CDCl_{3} solution. The NOE data reconfirmed the 1,4-syn configuration. Its NMR data in DMSO-d 6 were identical to those reported for verrucine A. The synthetic verrucine A was found to be optically purer than the one reported $\left\{[\alpha]^{30} \mathrm{D}+57 \pm 12^{\circ}\left(\mathrm{c} 0.25\right.\right.$, EtOH), lit. ${ }^{5}[\alpha]^{22} \mathrm{D}+37^{\circ}$ (c 0.1, EtOH)\}.

Total synthesis of verrucine B was achieved in a similar manner using Fmoc-d-Phe-CI in the double acylation steps (Scheme 1). 10b and 11b were obtained in 20.0\% and 2.2\% yields, respectively. The 1,4-syn epimer (11b) had comparable optical data $\left\{[\alpha]^{31} \mathrm{D}+63 \pm 27^{\circ}\left(\mathrm{c} 0.12, \mathrm{CHCl}_{3}\right)\right\}$ to the previous major product (11a) $\left\{[\alpha]^{31}{ }_{D}+60 \pm 4^{\circ}\right.$ (c 0.62, $\left.\mathrm{CHCl}_{3}\right)$ \}. The epimerization was observed to occur mainly at the $\mathrm{C}-1$ position.

Deprotection of 10b provided verrucine B (2, 73\%) as well as the 1,4 -syn epimer (13, 27\%). ${ }^{12}$ The NOE data of $\mathbf{2}$ showed that H-1 (4.96 ppm) and one of the GIn methylene protons at 2.27 ppm were on the same side. The optical rotation data of $\mathbf{2}$ showed that it had the same configuration but was optically purer $\left\{[\alpha]^{29} \mathrm{D}+183^{\circ}\right.$ (c 0.19 , EtOH), lit. ${ }^{5}[\alpha]^{22}{ }_{\mathrm{D}}+124^{\circ}$ (c 0.08, EtOH)\} than the natural one. Verrucine B was confirmed unambiguously as the derivative of D-phenylalanine and L-glutamine.

The synthesis of anacine started with F moc-L-Leu-Cl and was accompl ished using the same synthetic route. 1,4-syn compound 11c and 1,4-anti epimer 10c were obtained in 12.5% and 0.4% yields, respectively. Deprotection of 11c provided anacine (4, 74\%) and the 1,4-anti epimer (14, 25%). The NMR data in DMSO-d 6 of 4 were identical to
those reported for anacine. The optical rotation data of synthetic $4\left\{[\alpha]^{27}{ }_{\mathrm{D}}+79 \pm 13^{\circ}(\mathrm{c} 0.26\right.$, EtOH $\left.)\right\}$ showed that it has the same absolute configuration as the natural one $\left\{[\alpha]^{27}{ }_{D}+81 \pm 5^{\circ}(c 0.60, E t O H)\right\} .{ }^{13}$ The absolute configuration of 14 was not assigned in this work. However, identical proton NMR data were obtained for both compound 14 and the natural diastereoisomer of anacine. This confirmed the relative 1,4-anti configuration of the natural diastereoisomer of anacine.
The overall yields for 11a, 10b, and 11c were relatively low as compared to the previously reported less bulky pyrazino[2,1-b]quinazoline-3,6(1H,4H)-diones on Wang resins. ${ }^{7 c}$ The bulky Sasrin resin and the bulky tritylprotected GIn may have an important role in lowering the yields. To troubleshoot the problem, the Sasrin resins ($\mathbf{6}$, 7a, 7c, 9a, 9c, post-refluxed 9a and 9c) were treated separately with 5% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 30 min at room temperature. Cleavage of resin 9a provided the desired amidine $9 \mathbf{a}$ and unreacted linear peptide ($7 \mathbf{a}, \mathrm{Fmoc}=\mathrm{H}$) in a ratio of $93: 7$ as estimated by MS (the MS peak intensities of the products were calibrated according to their respective concentrations). Similarly, cleavage of resin 9c provided the desired amidine 9c and unreacted linear peptide ($\mathbf{7 c}, \mathrm{Fmoc}=\mathrm{H}$) in a ratio of 89:11 (by MS). Cleavage of the post-MeCN- $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ refluxed resin 9a provided the linear peptide and some other unidentified products. This might account for the small amount of products obtained in the second cyclization. There was ca. 7% of amidine obtained from the c eavage of post-MeCN- $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ refluxed resin 9c. Cleavage of $\mathbf{6}$ and $\mathbf{7}$ gave 16a and 17a as the only byproducts. This dearly indicated that complete acylation
of 6 with amino acid chloride was achieved even though the yield of isolated F moc derivative was only 70% from 5. The major byproduct, formamidine 16a, was confirmed by MS and NMR. Apparently the F moc-deprotected 5 and 6 condensed readily with solvent DMF under dehydrative conditions to give formamidines 16a and 17a, respectively. The latter was obtained at about 14% of 16 a as estimated by MS. A trace amount ($0-0.5 \%$ of $\mathbf{1 5 a}$ as estimated by MS) of the dimer 18a was also obtained. The ratio of 15a: 16a:17a was 78.4:19.1:2.6 as estimated by HPLC and ${ }^{1} \mathrm{H}$ NMR. The same study was carried out for 15b-d on Wang resins (Ala, Phe, and Leu). ${ }^{7 c}$ All the cleaved (TFA-Et ${ }_{3} \mathrm{SiH}-$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50: 5: 45, \mathrm{rt}, 1.5 \mathrm{~h}$) products showed the respective peaks of $\mathbf{1 5 b}$-d through $\mathbf{1 8 b}$-d by MS, although the amount was less when compared to those obtained from cleaving 6. The purities of 15b, 15c, and 15d were estimated as $90 \%, 92 \%$, and 88% (respectively) by ${ }^{1}$ H NMR.

15a-d

For 15-18:
a, $\mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CONHCPh}_{3}, \mathrm{R}^{4}=\mathrm{H}$
b, $\mathrm{R}^{3}=\mathrm{Me}, \mathrm{R}^{4}=\mathrm{Cl}$
, $\mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{4}=\mathrm{H}$
d, $\mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CHMe}_{2}, \mathrm{R}^{4}=\mathrm{H}$

To avoid the formation of undesired 16 and 17, the coupling reaction was carried out in 1-methyl-2-pyrrolidinone (NMP). The cleaved product 15a was cleaner, containing only a trace amount of 18a (2.4\% as estimated by MS) as the only byproduct.

Compounds 2 and 4 in DMSO-d ${ }_{6}$ and MeOH were found to degrade when they were kept at room temperature and exposed to air for several weeks. Purification of the decomposed mixture of $\mathbf{2}$ provided a polar major product, 19. The proton NMR showed that H-1 has disappeared

whilea new carbon appeared at 81.97 ppm in the ${ }^{13} \mathrm{C}$ NMR. With additional information from MS, 19 was assigned as an oxidized product of $\mathbf{2}$ at the $\mathrm{C}-1$ position. The stereochemistry was established by NOE. Since natural products such as fumiquinazolines C and E contain oxygen at the C-1 positions, ${ }^{3}$ it is therefore likely that an oxidation reaction will occur at the $\mathrm{C}-1$ position of verrucine B .

In summary, (+)-verrucines A and B and anacine were synthesized in seven steps in overall yields of $14.3 \%, 14.5 \%$, and 9.3%, respectively. ${ }^{14}$ Although the yields obtained were relatively low, their purities werehigh, ${ }^{7 c}$ as only the desired
compounds cyclize-released from the resins. Besides confirming the absolute configuration of verrucine A, verrucine B was shown unambiguously to be the derivative of D-phenylal anine and L-glutamine. Anacine and its natural diastereoisomer were confirmed as 1,4-syn and anti quinazolines (4 and 14), respectively, rather than benzodiazepines.

Experimental Section

General Experimental Procedures. Please see previous papers (ref 7) for details. All the 1D and 2D NMR experiments for ${ }^{1} \mathrm{H}(400.13 \mathrm{MHz}),{ }^{13} \mathrm{C}(100.61 \mathrm{MHz})$, and ${ }^{15} \mathrm{~N}(40.55 \mathrm{MHz})$ nuclei were obtained on a Bruker AVANCE-400 digital NMR spectrometer. F or solid phase, workup means filtered, washed with DMF ($\times 5$), $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 4)$, $\mathrm{MeOH}(\times 4), 10 \%$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 4)$, and $\mathrm{MeOH}(\times 4)$, dried under vacuum. Cleavage means the Sasrin resin was shaken with TFA-Et 3_{3} $\mathrm{SiH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:5:90) at room temperature for 30 min , then filtered and washed with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH , and the filtrate was evaporated to dryness.

N-(2-Aminobenzoyl)-L-GIn(Trt)-Sasrin Resin (6). Method A. F moc-L-GIn(Trt)-Sasrin-resin (5, Feinchemikallen AG, loading $0.345 \mathrm{mmol} / \mathrm{g}, 1.919 \mathrm{~g})$ was converted to resin $6(1.738 \mathrm{~g}$, new loading of $0.381 \mathrm{mmol} / \mathrm{g}$) according to ref 7 c .

The quality of resin 5 was checked by cleaving the deprotected resin 5, and the cleaved L-GIn(Trt)-OH gave m/z 389.15 as the only peak. Resin 6 was cleaved, and the product was analyzed by MS, HPLC, and NMR. MS (ESI, positive mode): m / z (relative intensity) 508.2307 (M + H, 100\%, 15a, calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{H}, 508.2236$), 444.2352 (M + H, 41\%, 16a, calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3}+\mathrm{H}, 444.2287$), $563.2809(\mathrm{M}+\mathrm{H}, 5 \%, 17 a$, calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{H}, 563.2658$), $627.25(\mathrm{M}+\mathrm{H}, 1 \%$, 18a, calcd for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{5}+\mathrm{H}, 627.26$); the formamidine 16a is more sensitive than 15a. Analytical $\operatorname{HPLC}\left(\mathrm{C}_{18}, 2.1 \times 200 \mathrm{~mm}, 5\right.$ $\mu \mathrm{m}$, flow rate $0.3 \mathrm{~mL} / \mathrm{min}$, linear gradient: $30-100 \% \mathrm{MeCN} /$ $\mathrm{H}_{2} \mathrm{O}+0.1 \%$ TFA in 40 min) showed 16a ($\mathrm{t}_{\mathrm{R}} 14.9 \mathrm{~min}$) and 15a ($t_{R} 17.3 \mathrm{~min}$) in a ratio of 20:80 (peak area at 220 nm). The crude product was also purified by preparative HPLC (C_{18}, $25 \times 210 \mathrm{~mm}, 6 \mu \mathrm{~m}$, flow rate $20 \mathrm{~mL} / \mathrm{min}$, linear gradient: 40-100\% MeCN/H2O $+0.04 \%$ TFA in 20 min) to afford 15a and 16a. The formamidine part was confirmed by 1D and 2D NMR (acetone-d d_{6}. Two methyl groups at $\delta_{\mathrm{H}} 2.85$ ($\delta_{\mathrm{c}} 37.1$) and $3.46\left(\delta_{c} 44.2\right)$ were correlated with the quaternary carbon at 158.2 ppm by HMQC and HMBC. The purity of resin $\mathbf{6}$ was estimated as 78%.

Resin-bound 15b-d were also cleaved with 50% TFA for 1.5 h . The formation of formamidines $\mathbf{1 6 b} \mathbf{- d}$ was also confirmed by MS and NMR. For example, the formamidine part of 16b was identified at $\delta_{\mathrm{H}} 8.04\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}, \delta_{\mathrm{C}} 156.0,{ }^{1} \mathrm{~J} \mathrm{c}, \mathrm{H}=\right.$ 196 Hz), 3.11 (s, $3 \mathrm{H}, \mathrm{Me}, \delta_{\mathrm{c}} 36.5$), and 3.27 (s, 3H, Me, $\delta_{\mathrm{c}} 43.8$); all these protons were correlated with the carbon at 156.0 ppm by HMQC and HMBC ($C_{3} O D$). Its purity was 90%, as estimated by ${ }^{1} \mathrm{H}$ NMR.

Method B. This method is similar to method A except NMP was used instead of DMF. The cleavage product showed only trace amounts of 18a (2.4% by MS).
(1S,4S)-1,3,4,6-Tetrahydro-3,6-dioxo-1-(phenylmethyl)-2H-pyrazino[2,1-b]quinazoline-4-(N-trityl)propanamide (\mathbf{N}-Trityl-verrucine A, 11a). Resin 6 (0.584 g , equal to 0.223 mmol of 5 , prepared by method A, purity 71%) was acylated with F moc-L-PheCl ($5.1+4.7$ equiv), then dehydrated, deprotected, and cyclized according to ref 7c. The process provided 11a ($8.8 \mathrm{mg}, 12.0 \%$ from 5) and trace amounts of epimer 10a ($<1 \%$). The resin was further reacted for 13.5 h to give additional 10a ($0.3 \mathrm{mg}, 0.4 \%$) and 11a ($1.1 \mathrm{mg}, 1.5 \%$) after purification.

Double Acylation. To a mixture of $6(0.651 \mathrm{~g}$, equal to 0.256 mmol of 5 , prepared by method A, purity 78%), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6.5 \mathrm{~mL})$) and pyridine ($2.03 \mathrm{mmol}, 7.9$ equiv to 5) was added solid Fmoc-L-Phe-Cl ($0.526 \mathrm{~g}, 1.30 \mathrm{mmol}, 5.1$ equiv). The reaction mixture was shaken at room temperature for 13 h and worked up. To the resin was added DMF (4 mL), pyridine ($1.98 \mathrm{mmol}, 7.7$ equiv), and solid Fmoc-L-Phe-Cl (0.521 g , 1.28 mmol , 5.0 equiv). The mixture was shaken at room tempera-
ture overnight, followed by a workup to give resin 7a. It was processed as above to give dibenzofulvene-piperidine adducts (69\%), 10a ($R_{f} 0.57,1.1 \mathrm{mg}, 0.8 \%$ from 5), and 11a ($R_{f} 0.31$, $24.1 \mathrm{mg}, 17.0 \%$ from 5) after purification by preparative TLC (EtOAc/hexane, 2:1).

Compound 11a: white solid, mp $134{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;[\alpha]^{28} \mathrm{D}+60$ $\pm 4^{\circ}\left(\mathrm{c} 0.62, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.0$, $1.0, \mathrm{H}-7), 7.80(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=7.8,1.4, \mathrm{H}-9), 7.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1$, $\mathrm{H}-10), 7.52(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.1, \mathrm{H}-8), 7.30-7.21(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}+$ $\left.\mathrm{Ph}_{3} \mathrm{C}\right), 7.12$ (s, 1H, $\left.\mathrm{Ph}_{3} \mathrm{CNH}\right), 6.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.7, \mathrm{H}-2), 5.26$ (dd, $1 \mathrm{H}, \mathrm{J}=9.9,5.7, \mathrm{H}-4), 4.71(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=10.7,3.8, \mathrm{H}-1)$, 3.43 (dd, $1 \mathrm{H}, \mathrm{J}=13.4,3.5$) and $3.19(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.4,10.7$, Phe- CH_{2}), $2.69(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.2,6.6)$ and $2.63(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 15.2, 7.4, Gln-CH CONH_{2}), $2.33(\mathrm{~m}, 1 \mathrm{H})$ and $1.93(\mathrm{~m}, 1 \mathrm{H}$, Gln$\left.\mathrm{CH}_{2} \mathrm{CNH}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.12,167.22,160.53(\mathrm{C}-6)$, 149.77 (C-11a), 147.12 (C-10a), 144.73 (aromatic Cq of $\mathrm{Ph}_{3} \mathrm{C}$), 135.56 (Cq of Phe), $134.94(\mathrm{C}-9), 129.66(\mathrm{CH} \times 2), 129.14(\mathrm{CH}$ $\times 2), 128.81(\mathrm{CH} \times 6), 127.89(\mathrm{CH} \times 6), 127.59(\mathrm{~d}), 127.26(\mathrm{~d})$, 126.98 (d), 126.97 (d), 126.94 (CH $\times 3$), 120.10 (s), 70.63 $\left(\mathrm{Ph}_{3} \mathrm{CN}\right), 58.50(\mathrm{C}-1), 54.72(\mathrm{C}-4), 43.89\left(\mathrm{Phe}^{2} \mathrm{CH}_{2}\right), 34.15$ (GIn$\left.\mathrm{CH}_{2} \mathrm{CONH}\right), 29.50\left(\mathrm{Gln}-\mathrm{CH}_{2} \mathrm{CHN}\right)$; NOE $\delta_{\mathrm{H}} 3.19$ (3.43, 1.93), 1.93 (5.26, 3.19); HRMS (ESI , positive mode) m/z 619.2705 ([M $+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{3}+\mathrm{H}, 619.2709$).
(1S,4S)-1,3,4,6-Tetrahydro-3,6-dioxo-1-(phenylmethyl)-2H-pyrazino[2,1-b]quinazoline-4-propanamide (Verrucine A, 1). Compound 11a ($9.1 \mathrm{mg}, 0.0147 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ and reacted with TFA (0.2 mL) and triethylsilane (0.1 mL) at room temperature for 15 min . The sol ution was evaporated, and the residue was purified by preparative TLC (EtOAc/MeOH/CH2Cl $2,50: 5: 45)$ to give recovered 11a (1.2 mg, 13\%), verrucine A (1) (4.6 mg, 84\%), and a trace amount of anti epimer 12 (ca. 3\%, estimated by proton NMR). Verrucine A (1): white solid; $[\alpha]^{30} \mathrm{D}+57 \pm 12^{\circ}$ (c 0.25, EtOH), lit. ${ }^{5}[\alpha]^{22} \mathrm{D}+37^{\circ}(\mathrm{c} 0.1, \mathrm{EtOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.28$ (dd, $1 \mathrm{H}, \mathrm{J}=8.0,1.0, \mathrm{H}-7$), 7.81 (ddd, $1 \mathrm{H}, \mathrm{J}=8.3,7.0,1.4$, $\mathrm{H}-9), 7.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2, \mathrm{H}-10), 7.53(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=7.6,1.0$, $\mathrm{H}-8), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.6, \mathrm{H}-2), 6.07$ (br s, 1H) and $5.54\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CONH}_{2}\right), 5.20(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.0$, $5.4, \mathrm{H}-4), 4.79(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=10.5,3.8, \mathrm{H}-1), 3.51(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $13.5,3.7$) and $3.27\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.5,10.4\right.$, Phe- CH_{2}), 2.64 (dt, $1 \mathrm{H}, \mathrm{J}=15.8,7.4)$ and $2.61\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=15.8,6.8, \mathrm{Gln}-\mathrm{CH}_{2^{-}}\right.$ $\mathrm{CONH} 2), 2.31(\mathrm{~m}, 1 \mathrm{H})$ and $1.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Gln}-\mathrm{CH}_{2} \mathrm{CNH}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.61\left(\mathrm{CONH}_{2}\right), 167.25(\mathrm{C}-3), 160.73(\mathrm{C}-6)$, 149.71 (C-11a), 147.14 (C-10a), 135.58 (Cq of Phe), 135.02 (C9), $129.68(\mathrm{CH} \times 2), 129.20(\mathrm{CH} \times 2), 127.69(\mathrm{CH} \times 6), 127.33$ (C-8), 127.02 (C-10 or C-7), 126.92 (C-7 or C-10), 120.03 (C$6 \mathrm{a}), 58.42(\mathrm{C}-1), 54.65(\mathrm{C}-4), 43.96\left(\mathrm{Phe}-\mathrm{CH}_{2}\right), 32.26\left(\mathrm{GIn}-\mathrm{CH}_{2}-\right.$ CONH_{2}), $29.21\left(\mathrm{Gln}-\mathrm{CH}_{2} \mathrm{CHN}\right.$); NOESY and ROESY $\delta_{\mathrm{H}} 3.27$ with 1.91; HRMS (ESI , positive mode) m/z 377.1601 ($[\mathrm{M}+\mathrm{H}]^{+}$, cal cd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}+\mathrm{H}, 377.1614$); m/z 399.1418 ($[\mathrm{M}+\mathrm{Na}]^{+}$, calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}$, 399.1433). anti epimer 12: HRMS (ESI, positive mode) m/z $377.1608\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}+\mathrm{H}, 377.1614$); m/z 399.1417 ($[\mathrm{M}+\mathrm{Na}]^{+}$, calcd for $\left.\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}, 399.1433\right)$.
(1R,4S)-1,3,4,6-Tetrahydro-3,6-dioxo-1-(phenylmethyl)-2H-pyrazino[2,1-b]quinazoline-4-(N-trityl)propanamide (\mathbf{N}-Trityl-verrucine $\mathbf{B}, \mathbf{1 0 b}$). The procedure was similar to the one described for 11a (double acylation), except that resin $6(0.508 \mathrm{~g}$, equal to 0.193 mmol of 5 , prepared by method A, purity 71\%) was acylated twice with F moc-d-LeuCl (total 5.7 equiv $\times 2$). The process provided dibenzofulvenepiperidine adducts ($40.0 \mathrm{mg}, 79 \%$), 10b $\left[\mathrm{R}_{\mathrm{f}} 0.55,23.9 \mathrm{mg}\right.$ (20.0\%), and $1.1 \mathrm{mg}(0.9 \%$, 2nd batch)], and the syn epimer 11b $\left[R_{f} 0.27,2.6 \mathrm{mg}(2.2 \%)\right.$ and $0.6 \mathrm{mg}(0.5 \%$, 2nd batch $\left.)\right]$ after purification by preparativeTLC ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} /$ hexane, 2.5:47.5:25:25). syn epimer 11b: $[\alpha]^{31} \mathrm{D}+63 \pm 27^{\circ}$ (c 0.12, $\left.\mathrm{CHCl}_{3}\right) ;$ HRMS (ESI , positive mode) m/z $619.2743\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, cal cd for $\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{3}+\mathrm{H}, 619.2709$).

Compound 10b: white solid; $[\alpha]^{31} \mathrm{D}+149 \pm 13^{\circ}$ (c 0.19, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.28(d d, 1 \mathrm{H}, \mathrm{J}=8.0,1.0, \mathrm{H}-7)$, 7.79 (td, 1H, J $=7.6,1.4, \mathrm{H}-9), 7.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0, \mathrm{H}-10)$, 7.50 (td, 1H, J = 7.5, 1.1, H-8), 7.39-7.31 (m, 3H, Ph), 7.29 (d like, 2H, Ph), 7.26-7.18 (m, 9H, Ph ${ }_{3} \mathrm{C}$), 7.17-7.14 (m, 6H, $\left.\mathrm{Ph}_{3} \mathrm{C}\right), 6.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}_{3} \mathrm{CNH}\right), 5.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 5.43(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}$ $=8.0, \mathrm{H}-4), 4.88(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.3,3.8, \mathrm{H}-1), 4.06(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$
$=14.5,3.7)$ and $2.95\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.6,10.4\right.$, Phe- CH_{2}), 2.59 $(\mathrm{m}, 1 \mathrm{H})$ and $2.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Gln}-\mathrm{CH}_{2} \mathrm{CONH}\right), 2.27(\mathrm{~m}, 1 \mathrm{H})$ and $2.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{GIn}-\mathrm{CH}_{2} \mathrm{CNH}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 170.10,167.95$, 160.68 (C-6), 149.82 (C-11a), 146.82 (C-10a), 144.51 (aromatic Cq of $\mathrm{Ph}_{3} \mathrm{C}$), 135.28 (Cq of Phe), $134.85(\mathrm{C}-9), 129.46(\mathrm{CH} \times$ 2), $129.32(\mathrm{CH} \times 2), 128.67(\mathrm{CH} \times 6), 127.89(\mathrm{CH} \times 6), 127.81$ (d), 127.63 (d), 127.54 (d), $126.99(\mathrm{CH} \times 3), 126.95$ (d), 120.35 (s), $70.61\left(\mathrm{Ph}_{3} \mathrm{CN}\right), 55.44(\mathrm{C}-4), 53.56(\mathrm{C}-1), 37.55\left(\mathrm{Phe}^{2} \mathrm{CH}_{2}\right)$, 33.58 (GIn- $\left.\mathrm{CH}_{2} \mathrm{CONH}\right), 26.89\left(\mathrm{Gln}-\mathrm{CH}_{2} \mathrm{CHN}\right)$; NOESY and ROESY $\delta_{\mathrm{H}} 4.88$ with 2.22 ; ${ }^{15} \mathrm{~N}$ NMR (obtained from ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC and HMBC in $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{N}} 112.0\left(\mathrm{~N}-2,{ }^{1} \mathrm{~J}_{\mathrm{NH}}=90.5\right), 139.0$ (CONHTrt, ${ }^{1} \mathrm{~J}_{\mathrm{NH}}=85.8$), 165.9 (N-5) and 237.1 (N-11); HRMS (ESI, positive mode) m/z $619.2725\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{3}+\mathrm{H}, 619.2709$); m/z $641.2526\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, calcd for $\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}, 641.2529$).
(1R,4S)-(+)-1,3,4,6-Tetrahydro-3,6-dioxo-1-(phenylme-thyl)-2H-pyrazino[2,1-b]quinazoline-4-propanamide (Verrucine $\mathbf{B}, \mathbf{2}$). Compound 10b ($19.8 \mathrm{mg}, 0.0320 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and reacted with triethylsilane (0.2 $\mathrm{mL})$ and TFA (0.8 mL) at room temperature for 30 min . The solution was evaporated, and the residue was purified by preparative TLC (EtOAc/MeOH/CH ${ }_{2} \mathrm{Cl}_{2}, 50: 5: 45$) to give verrucine $B 2\left(R_{f} 0.34,8.7 \mathrm{mg}, 73 \%\right)$ and the syn epimer $13\left(R_{f}\right.$ $0.29,3.2 \mathrm{mg}, 27 \%)$. Verrucine B 2: white solid; $[\alpha]^{29}{ }_{\mathrm{D}}+183 \pm$ 13° (c 0.19, EtOH), lit. ${ }^{5}[\alpha]^{22} \mathrm{D}+124^{\circ}$ (c 0.08, EtOH); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.3,1.0, \mathrm{H}-7), 7.80(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=$ $7.6,1.5, \mathrm{H}-9), 7.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8, \mathrm{H}-10), 7.53$ (td, 1H, J $=$ 7.5, 1.2, H-8), 7.41 (m, 2H, Ph), $7.37-7.32$ (m, 3H, Ph), 6.47 (s, 1H, H-2), $5.78(\mathrm{~s}, 1 \mathrm{H})$ and $5.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}_{2}\right), 5.39(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}=8.1, \mathrm{H}-4), 4.96(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.2,3.6, \mathrm{H}-1), 4.15(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=14.6,3.5$) and $2.97\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=14.6,10.3, \mathrm{Phe}-\mathrm{CH}_{2}\right), 2.45$ $\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7, \mathrm{Gln}-\mathrm{CH}_{2} \mathrm{CONH}_{2}\right), 2.31(\mathrm{~m}, 1 \mathrm{H})$ and $2.25(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{Gln}-\mathrm{CH}_{2} \mathrm{CNH}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 173.71\left(\mathrm{CONH}_{2}\right)$, 168.25 (C-3), 160.81 (C-6), 149.99 (C-11a), 146.86 (C-10a), 135.72 (Cq of Phe), 134.86 (C-9), $129.53(\mathrm{CH} \times 2), 129.37(\mathrm{CH}$ $\times 2), 127.68(\mathrm{CH}), 127.66(\mathrm{C}-10), 127.52(\mathrm{C}-8), 126.88(\mathrm{C}-7)$, 120.32 (C-6a), 55.39 (C-4), 53.98 (C-1), $37.57\left(\mathrm{Phe}^{2} \mathrm{CH}_{2}\right), 31.35$ (Gln-CH CONH_{2}), 26.10 (GIn-CH CHN_{2}); NOESY and ROESY $\delta_{\mathrm{H}} 4.96$ with 2.27; HRMS (ESI, positive mode) m/z 377.1628 $\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for $\left.\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}+\mathrm{H}, 377.1614\right) ; \mathrm{m} / \mathrm{z} 399.1418$ ([M + Na] , calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}$, 399.1433); syn epimer 13: MS (ESI, positive mode) $\mathrm{m} / \mathrm{z} 377.159\left([\mathrm{M}+\mathrm{H}]^{+}\right.$) and $399.135\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
(1S,4S)-1,3,4,6-Tetrahydro-3,6-dioxo-1-(2-methylpropyl)-2H-pyrazino[2,1-b]quinazoline-4-(N-trityl)propanamide (N-Trityl-anacine, revised structure, 11c). The procedure was similar to the one described for 11a (double acylation), except that resin $6(0.662 \mathrm{~g}$, equal to 0.260 mmol of 5 , prepared by method A, purity 78%) was acylated twice with F moc-l-Leu-Cl (total 5.0 equiv $\times 2$). The process provided dibenzofulvene-pi peridine adducts (66\%), 10c ($\mathrm{R}_{\mathrm{f}} 0.63,0.5 \mathrm{mg}$, 0.4% from 5), and 11c ($R_{f} 0.40,16.7 \mathrm{mg}, 12.5 \%$ from 5) after purification by preparative TLC (EtOAc/hexane, 2:1). anti epi mer 10c: HRMS (ESI, positive mode) m/z 585.2892 ([M + $\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{3}+\mathrm{H}, 585.2866$).
syn 11c: white solid; mp $131{ }^{\circ} \mathrm{C}$ (dec); $[\alpha]^{29} \mathrm{D}+94 \pm 7^{\circ}$ (c $\left.0.53, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.0,1.0$, $\mathrm{H}-7$), 7.77 (ddd, $1 \mathrm{H}, \mathrm{J}=8.3,7.0,1.4, \mathrm{H}-9), 7.64$ (dd, 1H, J $=$ 8.2, $0.5, \mathrm{H}-10$), 7.49 (ddd, $1 \mathrm{H}, \mathrm{J}=8.0,7.1,1.0, \mathrm{H}-8$), $7.30-$ $7.26(\mathrm{~m}, 6 \mathrm{H})$ and $7.26-7.20\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ph}_{3} \mathrm{C}\right), 7.13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}_{3^{-}}\right.$ CNH), $6.91(d, 1 H, \mathrm{~J}=4.2, \mathrm{H}-2), 5.27(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.6,5.8$, $\mathrm{H}-4), 4.52$ (ddd, $1 \mathrm{H}, \mathrm{J}=9.6,5.3,2.7, \mathrm{H}-1$), 2.76 (ddd, $1 \mathrm{H}, \mathrm{J}=$ $16.7,7.1,4.7$) and 2.68 (dd, $1 \mathrm{H}, \mathrm{J}=15.5,7.6, \mathrm{Gln}-\mathrm{CH}_{2} \mathrm{CONH}$), $2.38(\mathrm{~m}, 1 \mathrm{H})$ and $2.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Gln}-\mathrm{CH}_{2} \mathrm{CNH}\right) ; 1.86-1.80(\mathrm{~m}$, 2 H, Leu- CH_{2}), $1.77(\mathrm{~m}, 1 \mathrm{H}$, Leu-CHMe2), $0.98(\mathrm{~d}, 6 \mathrm{H}, \mathrm{J}=6.5$, Leu-CHMe2); ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right) \delta 170.19\left(\mathrm{CONH}_{2}\right), 168.00(\mathrm{C}-$ 3), 160.73 (C-6), 150.79 (C-11a), 147.19 (C-10a), 144.71 (aromatic Cq of $\left.\mathrm{Ph}_{3} \mathrm{C}\right), 134.83(\mathrm{C}-9), 128.80(\mathrm{CH} \times 6), 127.87(\mathrm{CH}$ $\times 6), 127.09(\mathrm{C}-8$ or $\mathrm{C}-10), 127.02$ (C10 or $\mathrm{C}-8), 126.93(\mathrm{CH} \times$ 3), 126.85 (C-7), 120.00 (s), $70.58\left(\mathrm{Ph}_{3} \mathrm{CN}\right), 54.98(\mathrm{C}-1), 54.77$ (C-4), $46.87\left(\mathrm{Leu}^{\left.-\mathrm{CH}_{2}\right)}\right.$), 34.37 (Gln- $\mathrm{CH}_{2} \mathrm{CONH}$), 29.91 (Gln- CH_{2-} CHN), 24.65 (Leu-CHMe2), 23.08 and 21.15 (Leu-Me2); NOESY and ROESY $\delta_{H} 2.20$ with $1.84 ;{ }^{15} \mathrm{~N}$ NMR (obtained from ${ }^{1} \mathrm{H}-$ ${ }^{15} \mathrm{~N}$ HSQC and HMBC in $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{N}} 112.8(\mathrm{~N}-2), 138.6$ (CONHTrt, ${ }^{1}$ J NH $=86$), 166.1 (N-5) and 236.4 ($\mathrm{N}-11$); HRMS
(ESI, positive mode) $\mathrm{m} / \mathrm{z} 585.2861$ ([M + H ${ }^{+}$, calcd for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{3}+\mathrm{H}, 585.2866$); m/z 607.2644 ($[\mathrm{M}+\mathrm{Na}]^{+}$, calcd for $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}, 607.2685$).
(1S,4S)-1,3,4,6-Tetrahydro-3,6-dioxo-1-(2-methylpropyl)-2H-pyrazino[2,1-b]quinazoline-4-propanamide (Anacine, revised structure, 4) and Epimer of Anacine (14). Compound 11c ($10.5 \mathrm{mg}, 0.0180 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) and reacted with triethylsilane $(0.2 \mathrm{~mL}$) and TFA (0.8 mL) at room temperature for 30 min . The solution was evaporated and purified by preparative TLC ($\mathrm{EtOAc} / \mathrm{MeOH}$ / $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50: 5: 45$) to give anacine $4\left(\mathrm{R}_{\mathrm{f}} 0.29,4.5 \mathrm{mg}, 74 \%\right)$ and the anti epimer $14\left(R_{f} 0.36,1.5 \mathrm{mg}, 25 \%\right)$. Anacine 4: white solid; $[\alpha]^{27} \mathrm{D}+79 \pm 13^{\circ}(\mathrm{c} 0.26, \mathrm{EtOH})$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.26$ (dd, $1 \mathrm{H}, \mathrm{J}=8.0,1.2, \mathrm{H}-7$), 7.76 (td, $1 \mathrm{H}, \mathrm{J}=7.7,1.3, \mathrm{H}-9$), 7.65 (d, 1H, J = 8.1, H-10), 7.49 (td, $1 \mathrm{H}, \mathrm{J}=7.6,1.0, \mathrm{H}-8$), $7.22(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.0, \mathrm{H}-2), 6.16(\mathrm{~s}, 1 \mathrm{H})$ and $5.74\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}_{2}\right)$, 5.23 (dd, 1H, J = 9.9, 5.5, H-4), $4.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 2.68(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{J}=7.1, \mathrm{GIn}-\mathrm{CH}_{2} \mathrm{CONH}_{2}\right), 2.40(\mathrm{~m}, 1 \mathrm{H})$ and $2.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{GIn}-$ $\mathrm{CH}_{2} \mathrm{CNH}$), 1.97 (overlapped m, 1H, Leu-CHMe2), 1.94 (d, 2H, $\left.\mathrm{J}=5.4, \mathrm{Leu}-\mathrm{CH}_{2}\right), 1.08(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.5)$ and $1.06(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ 6.5, Leu-CHMe2); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.85$ (s), 168.04 (s), 160.93 (s), 150.83 (s), 147.23 (s), 134.90 (C-9), 127.15 (C-8 or $\mathrm{C}-10$), 127.07 (C-10 or $\mathrm{C}-8$), 126.81 (C-7), 119.92 (s), 54.98 (C1), 54.79 (C-4), $47.05\left(\mathrm{Leu}-\mathrm{CH}_{2}\right), 32.35\left(\mathrm{Gln}-\mathrm{CH}_{2} \mathrm{CONH}_{2}\right), 29.45$ (GIn-CH2CHN), 24.73 (Leu-CHMe2), 23.20 and 21.17 (LeuMe 2); ROESY $\delta_{H} 2.68$ with $1.07,2.23$ with $1.94 ;$ HRMS (ESI, positive mode) $\mathrm{m} / \mathrm{z} 343.1777$ ($[\mathrm{M}+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}+\mathrm{H}$, 343.1770); $\mathrm{m} / \mathrm{z} 365.1577$ ($[\mathrm{M}+\mathrm{Na}]^{+}$, calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}$, 365.1590).
anti epimer 14: ${ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9$, $\mathrm{H}-7), 7.79(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.1, \mathrm{H}-9), 7.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0, \mathrm{H}-10)$, $7.51(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.4, \mathrm{H}-8), 6.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 5.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, one of $\left.\mathrm{CONH}_{2}\right), 5.47(\mathrm{t}, \mathrm{lH}, \mathrm{J}=8.2, \mathrm{H}-4), 5.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, one of $\left.\mathrm{CONH}_{2}\right), 4.74(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.4,3.6, \mathrm{H}-1), 2.61-2.49(\mathrm{~m}, 3 \mathrm{H}$, Gln- $\mathrm{CH}_{2} \mathrm{CONH}_{2}$ and one of Leu-CH2), 2.36-2.30 (m, 2H, Gln$\mathrm{CH}_{2} \mathrm{CNH}$), 1.87 ($\mathrm{m}, 1 \mathrm{H}$, Leu-CHM e_{2}), 1.75 (ddd, $1 \mathrm{H}, \mathrm{J}=14.3$, 9.5, 4.7, one of $\mathrm{Leu}-\mathrm{CH}_{2}$), 1.11 (d, $3 \mathrm{H}, \mathrm{J}=6.7$) and 1.09 (d, $3 \mathrm{H}, \mathrm{J}=6.5$, Leu-CHMe2); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.38\left(\mathrm{CONH}_{2}\right)$, 168.54 (C-3), 160.97 (C-6), 150.65 (C-11a), 146.89 (C-10a), 134.75 (C-9), 127.70 (C-10), 127.41 (C-8), 126.82 (C-7), 120.22 (C-6a), 55.47 (C-4), 51.16 (C-1), $39.55\left(\mathrm{Leu}^{2}-\mathrm{CH}_{2}\right), 31.48$ (GIn$\mathrm{CH}_{2} \mathrm{CONH}_{2}$), $25.98\left(\mathrm{GIn}-\mathrm{CH}_{2} \mathrm{CHN}\right.$), 24.69 (Leu-CHMe2), 23.62 and 21.29 (Leu-CHMe2); NOESY $\delta_{\mathrm{H}} 4.74$ with 2.34; HRMS (ESI, positive mode) m/z 343.1781 ($[\mathrm{M}+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}+\mathrm{H}, 343.1770$); m/z 365.1604 ($[\mathrm{M}+\mathrm{Na}]^{+}$, cal cd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Na}, 365.1590$).
(1S,4S)-1,3,4,6-Tetrahydro-3,6-dioxo-1-hydroxyl-1-(phen-ylmethyl)-2H-pyrazino[2,1-b]quinazoline-4-propanamide (1-Hydroxyverrucine B, 19). Oxidation of Verrucine B. The NMR sample of $\mathbf{2}$ in DMSO- d_{6} was transferred into a flask. The verrucine B in DMSO- d_{6} and MeOH solution was kept at room temperature for several weeks. After removal of the solvent under high vacuum, the oxidized mixture was purified by preparative TLC ($\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 50: 5: 45$). Two polar compounds were isolated. The major one was assigned as 1-hydroxyverrucine B, while the minor one might be its isomer. Oxidized verrucine B (19): white solid; 1 ${ }^{1}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.28$ (d, 1H, J $=7.9, \mathrm{H}-7$), 7.96 (s, 1H, H-2), 7.85 (strong coupled dd, $1 \mathrm{H}, \mathrm{J}=8.0,1.4, \mathrm{H}-10$), 7.82 (td, $1 \mathrm{H}, \mathrm{J}=8.3,1.2, \mathrm{H}-9$), $7.54(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=7.5,1.2, \mathrm{H}-8), 7.45(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}=8.0,0.8, \mathrm{Ph})$, 7.37-7.28 (m, 3H , Ph), $6.62\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}\right.$, one of $\left.\mathrm{CONH}_{2}\right), 6.47$ (s, $1 \mathrm{H}, \mathrm{OH}-1), 5.42\left(\mathrm{~s}, 1 \mathrm{H}\right.$, one of $\left.\mathrm{CONH}_{2}\right), 5.24(\mathrm{dd} 1 \mathrm{H}, \mathrm{J}=9.4$, $7.7, \mathrm{H}-4), 3.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.1)$ and $3.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.1$, Phe-CH 2), $2.60(\mathrm{~m}, 1 \mathrm{H})$ and $2.49\left(\mathrm{~m}, \mathrm{H}, \mathrm{Gln}-\mathrm{CH}_{2} \mathrm{CONH}_{2}\right), 2.58$ ($\mathrm{m}, 1 \mathrm{H}$) and $2.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Gln}-\mathrm{CH}_{2} \mathrm{CNH}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $176.06\left(\mathrm{CONH}_{2}\right), 169.28(\mathrm{C}-3), 160.76$ (C-6), $150.00(\mathrm{C}-11 \mathrm{a})$, 146.78 (C-10a), 134.82 (C-9), 134.39 (Cq of Phe), 131.70 (CH $\times 2), 128.55(\mathrm{CH} \times 2), 128.08(\mathrm{C}-10), 127.67(\mathrm{C}-8), 127.34$ (PhH), 126.71 (C-7), 120.45 (C-6a), 81.97 (C-1), 54.79 (C-4),
$44.07\left(\mathrm{Phe}^{\left.-\mathrm{CH}_{2}\right)}\right.$, $30.39\left(\mathrm{GIn}-\mathrm{CH}_{2} \mathrm{CONH}_{2}\right), 26.37\left(\mathrm{GIn}-\mathrm{CH}_{2}-\right.$ CHN); NOESY $\delta_{\mathrm{H}} 6.46$ with 2.49 ; ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC $\delta_{\mathrm{H}}\left(\delta_{\mathrm{C}}\right) 7.96$ (169.28, 150.00, 81.97, 54.79), 6.47 (81.97, 44.07); ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ HSQC $\delta_{H}\left(\delta_{N}\right) 7.96$ (113.4), 6.62 and 5.42 (85.6); HRMS (ESI, positive mode) $\mathrm{m} / \mathrm{z} 393.1545\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{H}$, 393.1563); $\mathrm{m} / \mathrm{z} 415.1378\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}$, 415.1382); $\mathrm{m} / \mathrm{z} 375.1425$ ($\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3}$, 375.1457). Minor isomer: HRMS (ESI, positive mode) m/z 393.1559 ($[\mathrm{M}+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{H}, 393.1563$).

Acknowledgment. The authors thank Professor Peter G. Mantle (I mperial College of Science, Technol ogy and Medicine, London SW7 2AY, UK) for providing an authentic sample of anadine. This work was supported by grants from the National Science and Technology Board of Singapore.

Supporting Information Available: ${ }^{1} \mathrm{H}$ and/or ${ }^{13} \mathrm{C}$ NMR spectra for 1, 2, 4, 10b, 11a, 11c, 14, and 19 in CDCl_{3}. List of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for 1, 2, 4, and 14 in DMSO-d 6 . Conformations of 1, 2, 4, 10b, 11a, 10c, 11c, and 14 calculated by MM2. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) For recent reviews, see: (a) Michael, J. P. Nat. Prod. Rep. 2000, 17, 603-620. (b) J ohne, S. In Supplements to the 2nd Edition of Rodd's Chemistry of Carbon Compounds; Ansell, M. F., Ed.; Elsevier: Amsterdam, 1995, Vol. IV I/J, pp 223-240.
(2) Penn, J.; Mantle, P. G.; Bilton, J. N.; Sheppard, R. N. J . Chem. Soc., Perkin Trans. 1 1992, 1495-1496.
(3) (a) Numata, A.; Takahashi, C.; Matsushita, T.; Miyamoto, T.; K awai, K.; Usami, Y.; Matsumura, E.; Inoue, M.; Ohishi, H.; Shingu, T. Tetrahedron Lett. 1992, 33, 1621-1624. (b) Takahashi, C.; Matsushita, T.; Doi, M.; Minoura, K.; Shingu, T.; Kumeda, Y.; Numata, A. J Chem. Soc., Perkin Trans. 1 1995, 2345-2353.
(4) (a) Wong, S.-M.; Musza, L. L.; Kydd, G. C.; Kullnig, R.; Gillum, A. M.; Cooper, R. J . Antibiot. 1993, 46, 545-553. (b) Fujimoto, H.; Negishi, E.; Yamaguchi, K.; Nishi, N.; Yamazaki, M. Chem. Pharm. Bull. 1996, 44, 1843-1848.
(5) Larsen, T. O.; Franzyk, H.; J ensen, S. R. J . Nat. Prod. 1999, 62, 15781580.
(6) Boyes-Korkis, J.; Gurney, K. A.; Penn, J.; Mantle, P. G.; Bilton, J. N.; Sheppard, R. N. J. Nat. Prod. 1993, 56, 1707-1717.
(7) (a) Wang, H.; Ganesan, A. J. Org. Chem. 1998, 63, 2432-2433. (b) Wang, H.; Ganesan, A. J . Org. Chem. 2000, 65, 1022-1030. (c) Wang, H.; Ganesan, A. J. Comb. Chem. 2000, 2, 186-194.
(8) (a) Hart, D. J.; Magomedov, N. Tetrahedron Lett. 1999, 40, 54295432. (b) Snider, B. B.; Zeng, H. Org. Lett. 2000, 2, 4103-4106.
(9) Carpino, L. A.; Cohen, B. J .; Stephens, K. E., J r.; Sadat-Aalaee, S. Y.; Tien, J.-H.; Langridge, D. C. J Org. Chem. 1986, 51, 3732-3734.
(10) Mazurkiewicz, R. Monatsh. Chem. 1989, 120, 973-980.
(11) He, F.; Snider, B. B. J . Org. Chem. 1999, 64, 1397-1399.
(12) Epimerization may be due to the strongly acidic condition. Numata et al. (ref 3) pointed out that the fumiquinazol ines epimerized at both $\mathrm{C}-1$ and $\mathrm{C}-4$ positions under strongly basic conditions, but epimerized at $\mathrm{C}-1$ only under strongly acidic conditions. C-6-benzene ring-N-$11-\mathrm{C}-11 \mathrm{a}-\mathrm{C}-1$ is a highly conjugated unsaturated ketonelike system. The interchangeable ketone and enol forms are the driving force for epimerization at the $\mathrm{C}-1$ position.

(13) Optical rotation data of anacine and its natural diastereoisomer were not reported in the original paper (ref 6). The value reported here was obtained from the authentic sample provided by Professor Mantle.
(14) The authentic samples of verrucines A and B were not available.

NP010342Y

[^0]: * To whom correspondence should be addressed. Tel: + 658741443. Fax: + 65-7791117. E-mail: mcbsimmm@imcb.nus.edu.sg.

